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Abstract. Structural Health Monitoring (SHM) is a fast-developing, interdisciplinary
field of research having its roots in vibroacoustics and non-destructive testing and evalua-
tion. Fast development of the area is due to the fact that SHM is heavily stimulated by the
engineering problems of maintenance and safe operation of technical infrastructure. The
use of SHM is slowly becoming a standard in high-cost, modern infrastructure. Therefore,
the possibility of application should always be on the horizon of any related research work.
Thus far, the majority of SHM applications have been demonstrated in civil, aerospace
and mechanical engineering. This paper reviews the main achievements and points out
the current trends in this field with the emphasis on low-frequency methods.

1 Introduction

The point of this publication is to make the Reader acquainted with the historical mile-
stones and up-to-date trends in the field of Structural Health Monitoring. A concise
and informative definition of Structural Health Monitoring can be found in Sohn et
al. [72]: “The process of implementing a damage detection strategy for aerospace, civil,
and mechanical engineering infrastructure is referred to as Structural Health Monitoring
(SHM). The SHM process involves the observation of a system over time, using periodi-
cally sampled dynamic response measurements from an array of sensors, the extraction of
damage-sensitive features from these measurements, and the statistical analysis of these
features to determine the current state of the system’s health.” The damage state of a
system can be considered as a five-step process, as discussed in Rytter [70]. It can be
described by answering the following questions:

1. Is there any damage in the system (existence)?
2. Where is the damage in the system (location)?
3. What kind of damage has occurred (type)?
4. How severe is the damage (extent)?
5. How much useful life remains (prognosis)?
The importance of diagnostics was probably first appreciated by the community of

mechanical engineers dealing with rotating machinery, where damage involves high risk to
staff and high cost of repair e.g. in turbines. Natke, Cempel [61] present vibroacoustics
as a tool for machine diagnostics, which still remains a challenge in practice as shown in
Eisenmann, Eisenmann [19]. The specific feature of rotating machinery is that it is
self-exciting and relatively compact (not of huge dimensions), which is often not the case
in SHM. The machine diagnostics is usually a low-frequency problem.
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Many SHM methods originate from the Non-Destructive Testing and Evaluation
(NDT/E) methods i.e. ultrasonic testing, radiographic testing, acoustic emission, pene-
trant testing, magnetic particle inspection, eddy currents, and optical holography, which
are successfully applied in the industry for local detection of flaws in structural compo-
nents. Some NDT/E methods require external excitation, for instance ultrasonic testing,
others do not, for instance acoustic emission. The NDT/E methods usually operate in
high frequencies.

The objective of SHM is to create a monitoring system (possibly for the whole struc-
ture, which is sometimes of complicated topology and considerable dimensions), able to
track changes in structural condition continually and raise appropriate alerts if a defect
is detected. As a consequence of the evolution from the two major streams, i.e. ma-
chine diagnostics and NDT/E, the SHM methods for identifying structural damage can
be roughly split into low-frequency methods (non-ultrasonic) and high-frequency methods
(ultrasonic), respectively. As examples, low-frequency methods are used in civil engineer-
ing for examining stiffness degradation of a bridge, whilst high-frequency methods are
used in aerospace engineering for crack identification in a wing.

As the author deals with low-frequency methods in his research, the focus of the article
is naturally moved towards these methods. Special attention is paid to system identifi-
cation as the basis for most low-frequency SHM methods currently used in engineering
practice. Subsequent damage identification widely relies on the system identification
methods.

The organization of the article is the following: Sec. 2 describes the measuring de-
vices and techniques commonly used in SHM. Section 3 takes up the problem of system
identification, which is a crucial issue in low-frequency SHM, because a well-recognized
reference structure is needed for tracking subsequent changes in behaviour due to dam-
age. Section 4 briefly characterizes the low-frequency (vibration-based) methods. Section
5 describes the NDT/E methods, which gave an impetus for the development of high-
frequency (ultrasonic) SHM methods, the quick review of which is presented in subse-
quent Sec. 6. Section 7 reports the applications of artificial intelligence to perform signal
processing or damage identification. Section 8 mentions examples of testing the SHM
methods on real structures. Finally, Sec. 9 highlights modern trends in the field. A
selection of the essential references, including the periodically-held, key events on SHM
[51, 25, 21, 74], the related events [3, 29, 42] and the relevant journals in the field [7, 17,
67] is enclosed.

2 Measuring devices and techniques in SHM

Almost all the SHM methods analyze a structural response due to excitation with an
actuator. In order to capture the response, various sensors are mounted on the structure.
This chapter briefly describes the most frequently used devices and techniques for making
accurate measurements. The quality of the measurements is absolutely essential in SHM.

2.1 Piezoelectric transducers

Probably the most common measuring devices used in SHM are piezo-electric transducers
because of their outstanding electromechanical properties, relatively low price, and both
actuating and sensing capabilities. They have been used for years in classical NDT/E
methods like ultrasonic testing or acoustic emission. An in-depth presentation of piezo-
electric sensors is given in Gautschi [27].

The direct piezoelectric effect, utilized in sensors, is present when a mechanical de-
formation of the piezoelectric material produces a proportional change in the electric
polarization of that material (electric charge appears on opposite faces of the material).
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The converse piezoelectric effect, utilized in actuators, means that an acting external elec-
tric field induces proportional mechanical stress in the piezoelectric material (the material
is deformed when an electric voltage is applied).

A rather restricted number of piezoelectric materials have been found suitable for
transduction elements in piezoelectric sensors. Basically, natural (e.g. quartz, tourmaline)
and synthetic single crystals (e.g. gallium orthophosphate, crystals of the CGG group),
piezoelectric ceramics (e.g. lead-zirconate-titanate – denoted as PZT), and thin films (e.g.
polyvinylidene fluoride – denoted as PVDF) can be used. Piezoelectric materials used in
sensors combine excellent mechanical properties with a high piezoelectric sensitivity at a
low production cost. They have a number of advantages, which makes them particularly
suitable for dynamic measurements. Piezoelectric sensors have extremely high stiffness
(their deflections are usually in the µm range), high natural frequency (hundreds of kHz),
wide measuring range and wide operating temperature range. The crystal-based sensors
have very high stability whereas the ceramic-based ones can be produced in commercial
quantities. Quasi-static measurements are possible with sensors having single crystals as
transduction elements.

Piezoelectric sensors can directly measure the force, strain, acceleration, and pressure.

2.2 Fibre optics

Another widespread sensor with a growing number of applications in SHM is an optical
fibre. An extensive review of various types of optical fibre sensors is presented in Udd
[82] and Briley [9].

The phenomenon of guiding light by a transparent cylinder has been known since the
antique era (Egyptians). The early light-guiding materials (glass) had very high optical
loss parameters i.e. hundreds or thousands decibel per kilometre. A real technology
breakthrough occurred in 1966, when Kao Hockham [44] envisaged the fabrication
of a glass fibre with optical loss lower than 20 dB/km and its potential application in
telecommunications.

Modern optical fibres are composed of high-silica glass doped with some oxides to
achieve a required refraction index. An optical fibre consists of a core encapsulated
in a cladding with a smaller refraction index. This enables total internal refraction at
some incidence angle of entering light. Optical fibres can be generally divided into two
types: multi-mode and single-mode. Of special importance in strain sensor technology are
single-mode optical fibres. Single-mode fibre limits its guidance capability for a chosen
wavelength to one mode thanks to small diameter of the core and small difference between
the core and cladding refraction indices. In practice however, instead of just one mode,
two orthogonally-polarized, strongly-coupled modes are carried by most commercially
produced fibres. This effect, called birefringence, is often preferable since it helps the
fibre to maintain the polarization of a guided wave and to transmit it long distance. Light
launching into a single-mode fibre of small core is difficult and favours a light source with
highly directional output, e.g. light emitting diode or injection laser diode.

The major division of the fibre optic sensors distinguishes the interferometric sensors
for outside application and fibre Bragg grating sensors for inside application (embedded
in the structure).

The most widespread interferometric sensors interrogate a measurand-induced change
of phase in the light propagating along a single-mode optical fibre. Several different lay-
outs of interferometric sensors may be used, depending on arrangement of optical paths.
The most common configurations, based on phase change analysis, are the Michelson and
Fabry-Perot interferometers. Interferometric optical fibre sensors provide high-sensitivity
measurements. They require a special signal recovery technique (demodulation) to per-
form absolute measurements. Development of low-cost fabrication methods that do not
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compromise the strength and fatigue life of the optical fibres should facilitate the wide
use of the sensors.

Fibre Bragg grating (FBG) sensors are highly sensitive devices as well. Their man-
ufacturing process is automated and ensures no strength loss of the optical fibre. The
intracore Bragg grating fibre optic sensor relies on the narrow-band reflection from a fibre
segment of periodic variations (gratings) in the core index of refraction of a single-mode
fibre. If FBG sensors are used with the ratiometric demodulation system, they can build
robust, absolute-measurement, low-cost sensing system, which can be integrated on an
optoelectronic chip, easily interconnected with the structure.

Interferometric optical fibre sensors and intracore FBG sensors have a great potential
to become widely used instruments for strain-like measurements.

2.3 Other sensors

Other sensors used in SHM are: electro-magnetic acoustic transducers (EMAT) widely
used in ultrasonic testing (see Sec. 5), micro-electro mechanical systems (MEMS), and
laser interferometers – used in optical holography (see Sec. 5).

3 System identification

System identification is the process of developing a faithful mathematical model of a phys-
ical system using experimental data. The point of vibration-based system identification
is determination of modal characteristics of a structure using either known or unknown
excitation. It is a sine qua non stage of the vast majority of low-frequency SHM analy-
ses, which is always carried out before the commencement of the damage identification
procedure. As a result of system identification a reference model for SHM is determined,
thereby enabling the tracing of subsequent states of damage.

System identification theory stems basically from the control theory. In this work a
brief summary of system identification is given, emphasizing the methods used in SHM.
Simple peak picking method was the origin of modal testing in the frequency domain.
However, some subsequent and more sophisticated methods turned into the time domain,
using only the output measurements for extracting modal parameters. Thorough treat-
ment of the subject can be found in Juang [41], Ljung [49] and an overview in Peeters
[64].

3.1 Useful models

The equations of motion of a linear-dynamic mechanical system of n2 independent vari-
ables are second-order differential equations of the form:

Mẅ + ζẇ +Kw = f(w, t). (1)

For the sake of performing efficient computational analysis, it is convenient to reshape
Eq. (3.1) into the following compact form:

ẋ = Acx+Bcu, (2)

where:

Ac =

[
0 I

−M−1K −M−1ζ

]
, Bc =

[
0

M−1B2

]
,
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x =

[
w
ẇ

]
, f(w, t) = B2u (t),

Ac (n× n), n = 2n2, is the state matrix and Bc (n× r) is the input matrix, with r being
the number of inputs.

The response of the dynamic system can be measured by various sensors e.g. ac-
celerometers, velocity sensors, strain gauges, and stored in the output vector y(t) of q
entries:

y = Caẅ + Cvẇ + Cdw, (3)

where Ca, Cv, Cd are output matrices corresponding to acceleration, velocity and dis-
placement, respectively. The matrices contain conversion factors between the measured
units (e.g. meters) and electrical units (e.g. volts) indicated by the measuring equipment.

Solving (3.1) for ẅ and substituting the result into (3.3) yields:

y = Cx+Du, (4)

where: C = [Cd − CaM−1K Cv − CaM−1ζ], D = CaM
−1B2, C(q × n) is the output

matrix and D(q × r) is the direct transmission (throughput) matrix.
Equations (3.2) and (3.4) constitute a continuous-time, deterministic state-space model

of a dynamical system. In practice however, the measurements are available at dis-
crete time instants. Thus the discrete model, sampled in equally spaced instants 0, ∆t,
(k + 1)∆t, . . ., yields:

xk+1 = Axk +Buk, (5)

yk = Cxk +Duk, (6)

where: A = eAc∆t, B = Bc

∆t∫
0

eAcτdτ , τ = (k + 1)∆t− τ ′.

Assuming a system to be in a steady state and solving for the output yk in terms of
the previous inputs ui (i = 0, 1, . . . , k) with zero initial condition, produces:

yk =
k∑
i=1

Yiuk−i +Duk, (7)

where Yk are the Markov parameters :

Yk ≡ CAk−1B, Y0 ≡ D, (8)

Note that Y0 = D. Equation (3.7) is called the weighting sequence description because
the contribution to the output at time step k is made by the input at time step k and
all previous steps k− 1, k− 2, . . . , 1, 0, weighted by the pulse response sequence (Markov
parameters).

Another useful model can be obtained by adding and subtracting the same term Gyk
in Eq. (3.5). Then, substituting yk from (3.6), gives:

xk+1 = Āxk + B̄ūk, (9)

where: Ā = A+GC, B̄ =
[
B +GD −G

]
, ūk =

[
uk
yk

]
.

Equations (3.9) and (3.6) constitute a discrete-time, deterministic state-space observer
model with the matrix G being the observer gain matrix.

5



For a steady state and zero initial conditions, the state-space observer model can be
expressed as:

yk =
k∑
i=1

Ȳiūk−i +Duk, (10)

where:

Ȳk ≡ CĀk−1B̄ =
[
C (A+GC)k−1 (B +GD) − C (A+GC)k−1G

]
,

Ȳ0 ≡ D,

(11)

Ȳk are the observer Markov parameters. Note that Ȳ0 = D. Equation (3.10) is commonly
called the linear difference model or ARX model where AR refers to the AutoRegressive
part (output data) and X refers to the eXogeneous part (input data). The ARX model
corresponding to the state-space observer model is analogous to the weighting sequence
description corresponding to the state-space model (cf. (3.7)).

If we decide to account for noise in modelling and measurements, the following discrete-
time, deterministic-stochastic state-space model has to be considered:

xk+1 = Axk +Buk + wk,

yk = Cxk +Duk + vk,
(12)

where wk is the process noise due to modelling imperfections and vk is the measurement
noise due to equipment imperfections. If the input uk is unknown e.g. in the case of
ambient vibration, the corresponding terms disappear from Eqs. (3.12), and the discrete-
time, stochastic state-space model yields:

xk+1 = Axk + wk,

yk = Cxk + vk.
(13)

Both noise components are assumed to be zero mean E[wk] = E[vk] = 0, white, in-
dependent of the actual state E[xk w

T
k ] = E[xk v

T
k ] = 0, with the following covariance

matrices:

E

[ (
wm
vm

) (
wTn vTn

) ]
=

(
Q S
ST R

)
δmn. (14)

The stochastic process is also zero mean E[xk] = 0 and stationary E[xk x
T
k ] = Σ,

meaning that the state covariance matrix Σ is constant in time. The set of i output
covariance matrices and the next state-output covariance matrix are defined as:

Ri = E
[
yk+i y

T
k

]
, Γ = E

[
xk+1 y

T
k

]
. (15)

With the definitions (3.15), the following relations can be derived:

Σ = AΣAT +Q, Γ = AΣCT + S, (16)

Ri = CAi−1Γ, R0 = CΣCT +R. (17)

Equation (3.17) resembles the definition of Markov parameters in Eqs. (3.8) or (3.11).
This formal similarity is crucial as it allows to use the system realization theory of deter-
ministic time-invariant model in stochastic considerations. Therefore, it is the basis for
developing stochastic, output-only system identification methods.
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By applying a steady-state Kalman filter to the stochastic state-space model, another
representation called the forward innovation model can be obtained:

zk+1 = Azk +Kek,

yk = Cxk + ek,
(18)

where the white noise sequence ek are called innovations and K is the so-called Kalman
filter gain matrix. Note that the state vector zk is in a different basis than xk (cf. (3.13)).
The corresponding general model (non-state-space) is the Auto Regressive Moving Average
(ARMA) model with the AR term related to outputs and the MA term related to white
noise input:

yk + α1yk−1 + ...+ αnαyk−nα = ek + γ1ek−1 + ...+ γnγek−nγ . (19)

For an ARMA model deduced from a state-space model, the AR order nα is equal to the
MA order nγ.

3.2 Fundamentals of system identification

In order to transform time-dependent linear differential equations (the equations of mo-
tion) into the algebraic domain (frequency domain), we need the Laplace transform defined
as:

L [y (t)] =

∞∫
0

y (t) e−stdt, (20)

where the scalar s = σ + jω is a complex variable. The Laplace transform applies to the
continuous time analysis and is customarily called the s-transform. Two-sided Laplace
transform covering the whole range (−∞,∞) is called continuous Fourier transform.

In practice, the data for system identification are sampled at discrete time instants
k∆t (k = 0, 1, 2, . . .), and an analogous z-transform in the discrete time is defined as:

Z [y (k∆t)] =
∞∑
0

y (k∆t) z−k. (21)

Note that the s-transform of the sampled time signals can be obtained from its z-transform
by substituting z = es∆t.

It is known that any periodic signal can be expressed in terms of a Fourier series, being
a linear combination of cosine and sine terms. An arbitrary discrete-time input signal of
the frequency ω, captured for m samples at ∆t-spaced instants τ = 0, 1, ... , m − 1, can
be expressed in terms of the following Fourier series:

u (τ) =
∞∑

i=−∞

Û (i)ej(ωτ∆t)i =
∞∑

i=−∞

Û (i)ej(
2πτ
m )i,

i = −∞, ... , 0, 1, ... ,∞, (22)

where Û (i) are the scaling coefficients (weighting amplitudes) for the frequencies in the
decomposition.

For performing numerical analysis, the infinite series must be truncated, which is
equivalent in practice to consideration of a limited frequency range. Thus the input
signal becomes:

u (τ) =
m−1∑
k=0

U (k)ej(
2πτ
m )k, k = 0, 1, ... , m− 1. (23)
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In signal processing, the weighting amplitudes U(k) need to be determined, which can be
obtained through the inverse transform of (3.23):

U(k) =
1

m

m−1∑
n=0

u (n) e−j(
2πk
m )n, n = 0, 2, ... , m− 1. (24)

The formula (3.24) is called the Discrete Fourier Transform (DFT) of the sampled
input sequence u(n). The Inverse Discrete Fourier Transform (IDFT) is naturally the
formula (3.23).

Note that U(k) is periodic, such that U(k) = U(k+m). As the sequence u(n) is real,
the equality U(−k) = U∗(k) holds, where * means a complex conjugate. One can show
that the values of U(k) (k = m/2, m/2+1, . . . ,m) are the complex conjugates of the values
U(k) (k = m/2, m/2 − 1, . . . , 0). Only three values U(0), U(m/2) and U(m) are always
real, the other ones are complex. This implies that U(k) should be uniquely determined
over the interval [0,m/2], corresponding to [0, π]. Consequently, the maximum frequency
captured by the DFT (due to truncation of the infinite series) depends upon the time
interval ∆t as follows:

fnyq =
m

2

1

m∆t
=

1

2∆t
. (25)

This is the Nyquist frequency. Hence, the highest frequency that can be estimated by the
sampling rate 1/∆t Hz is only half that rate.

Applying the DFT directly in numerical analysis would require O(m2) operations in
contrast to only O(mlog(m)) ones performed by the efficient Fast Fourier Transform
(FFT) algorithm. There exists a number of the FFT implementations, the most popu-
lar of which is the Cooley–Tukey [14] version. Performing the z-transform (3.21) of
the weighting sequence description (3.7), one transfers the input/output relation to the
frequency domain:

y(z) =
∞∑
τ=0

Yτz
−τu (z), z = ejω∆t, (26)

where

G(zk) =
∞∑
τ=0

Yτz
−τ
k , zk = ej

2πk
m (27)

is the Frequency Response Function (FRF). The infinite series in (3.27) can be truncated
if the system is asymptotically stable.

A periodic input u(n) will produce a similar periodic output y(n) scaled in amplitude
and shifted in phase. Thus having DFTs (cf. (3.24)) U(k), Y (k) of the input u(n) and
output y(n) signal for a single-input single-output (SISO) system, the Frequency Response
Function can be simply expressed as:

G (zk) =
Y (k)

U (k)
. (28)

The relation between the state-space model and the FRF is given by:

G (zk) = C (zkIn − A)−1B +D. (29)

For a multi-input multi-output (MIMO) system with N data records available, the FRF
becomes:

G (z) =

N∑
i=1

Yi (k)U∗i (k)

N∑
i=1

Ui (k)U∗i (k)

. (30)
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An equivalent of FRF for the Laplace transform (continuous time) is the transfer function.
In system identification one uses the correlation functions for the input and output

signals. The cross-correlation function Ryu between the output and input (delayed by the
time i∆t), and the auto-correlation functions of the input Ruu and output Ryy signals
are defined as (cf. (3.15)):

Ryu (i) =
1

m

m−1∑
k=0

y (k)uT (k − i) = E
[
yk u

T
k−i
]
,

Ruu (i) =
1

m

m−1∑
k=0

u (k)uT (k − i) = E
[
uk u

T
k−i
]
,

Ryy (i) =
1

m

m−1∑
k=0

y (k) yT (k − i) = E
[
yk y

T
k−i
]
.

(31)

One can show the validity of the following relation:

Ryu (i) =
∞∑
k=0

YkRuu (i− k) (32)

which is similar in form to (3.7) and is therefore called the correlation weighting sequence
description for linear systems.

The DFTs Syu, Suu, Syy of the correlation functions (3.31) are called cross-spectral
and auto-spectral densities, respectively. For SISO systems, the FRF can be expressed in
terms of the densities as (cf. (3.28)):

G (zk) =
Syu (k)

Suu (k)
, (33)

Spectral methods frequently use the formula, which expresses the output spectrum in
terms of the input one and the related FRFs, as:

Syy = G (zk)SuuG
∗ (zk) . (34)

The spectral density of the signal multiplied by an appropriate factor will produce
the power carried by the signal and can be plotted in the power spectral density (spectral
power distribution). Due to the finite representation of the DFT, a phenomenon called
spectral leakage occurs, resulting in blurring the input frequencies in the power spectral
density. To minimize the leakage, various windowed signals are used (e.g. Hamming,
Bartlett, etc.), which means introducing some weight in Eq. (3.24).

Historically, the system identification methods started from the input-output deter-
ministic approach to turn towards the output-only stochastic approach nowadays. The
first step of classical input-output system identification is determination of the Markov
parameters. Depending upon the data available, the methods of determining Markov
parameters are divided into time domain or frequency domain methods. The data for
extracting the Markov parameters may be either input and output signals in the time
domain, measured with relatively simple equipment or FRFs in the frequency domain,
measured directly with sophisticated spectrum analyzers. The initial approach of deter-
mining the Markov parameters is the time domain, off-line approach consisting of three
steps:

1) performance of FFT (cf. (3.24)) for input and output signals measured, for some
period of time (transformation of the problem into the frequency domain),

9



2) calculation of FRF (cf. (3.28)) on the basis of the FFTs from step 1),

3) performance of inverse FFT on the FRF (cf. (3.27)) to get the Markov parameters
(back transformation of the problem into the time domain).

An alternative for the off-line approach is an on-line one for determining observed
Markov parameters in the time domain. It is called recursive least squares method, which
can be arranged in a special modular structure called Least Squares Lattice Filter (see
Juang [41]), especially suitable for on-line application. The method is quite sophisticated,
however the possibility of on-line use is its greatest asset. A review of up-to-date recursive
identification methods is given in Ljung, Soderstrom [50].

If the FRF data is available directly, the frequency-domain state-space identification
is possible thanks to expressing the FRF in the form of the matrix fraction description:

G (zk) = Q̄−1 (zk) R̄ (zk) , (35)

where
Q̄ (zk) = Iq + Q̄1z

−1
k + ...+ Q̄pz

−p
k ,

R̄ (zk) = R̄0 + R̄1z
−1
k + ...+ R̄pz

−p
k .

(36)

The multipliers Q̄p, R̄p are nothing else but the observer Markov parameters (cf.
(3.11)). Premultiplying Eq. (3.35) by Q̄ (zk) and rearranging, the following set of equa-
tions is obtained:

G(zk)= −Q̄1G (zk) z
−1
k − ...− Q̄pG (zk) z

−p
k + R̄0 + R̄1z

−1
k + ...+ R̄pz

−p
k (37)

The linear algebraic set of Eqs. (3.37) can be solved for the observer Markov pa-
rameters

[
−Q̄1 ... − Q̄p R̄0 ... R̄p

]
(the unknown vector) in the sense of the least squares

norm.
For output-only stochastic system identification, the input is not included in the model

description (cf. (13)), therefore the Markov parameters relating output with input cannot
be determined. Only output is measured in this approach and it entirely replaces Markov
parameters in mathematical calculations. However, thanks to the formal similarity of
state-output covariances (3.17) to Markov parameters (3.8), the classical theory of system
realization for time-invariant deterministic models can be applied.

A realization of the system is the computation of the state, input and output matrices
A,B,C (sometimes the direct transmission matrix D, too) from the Markov parameters
for the deterministic model and from the outputs for the stochastic model. Any system has
an infinite number of realizations since there exist an infinite number of state-space rep-
resentations that describe the same input-output relationship. A model with the smallest
state-space dimensions is called minimum realization.

System realization starts with formation of the generalized αq x βr Hankel matrix
(a matrix in which every antidiagonal stores the same element), composed of Markov
parameters in the case of deterministic models:

H (k − 1) =


Yk Yk+1 ... Yk+β−1

Yk+1 Yk+2 ... Yk+β

... ... ... ...

Yk+α−1 Yk+α ... Yk+α+β−1

 . (38)

Choosing α ≥ n and β ≥ n (the order of the system), the Hankel matrix is of rank n.
Using the definition (3.8) of Markov parameters, the Hankel matrix can be expressed as:

H (k − 1) = OαA
k−1Qβ, (39)
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where:

Oα =


C

CA

CA2

...

CAα−1

 , Qβ =
[
B AB A2B ... Aβ−1B

]
. (40)

The block matrix Oα is the observability matrix and the block matrix Qβ is the control-
lability matrix. The Eigensystem Realization Algorithm (ERA) starts with SVD factor-
ization of the Hankel matrix for k = 1, yielding:

H (0) = UTV T , (41)

where U and V are orthonormal matrices and T is a diagonal matrix with n non-zero
components arranged in decreasing order.

Considering only the parts of matrices U, T, V corresponding to the n non-zero com-
ponents of T and taking into account that H (0) = OαQβ (cf. (3.39)), the observability
and controllability matrices can be expressed in terms of the SVD matrices (cf. (3.41))
as:

Oα = UnT
1/2
n , Qβ = T 1/2

n V T
n (42)

Thus from the shifted Hankel matrix formula H (1) = OαAQβ (cf. (3.39)), the state
matrix A can be determined as:

A = T−1/2
n UT

nH(1)VnT
−1/2
n , (43)

Note that the input matrix B is the first r columns of the controllability matrix Qβ and
the output matrix C is the first q rows of the observability matrix Oα (cf. (3.40)). The
triplet A,B,C determined in this way is a minimum realization of the system.

Let us decide to use only some data stored in the observability matrix Oα. If we
delete the first p rows or the last p rows from matrix Oα, we get the following reduced
observability matrices (cf. (3.40), (3.42)):

O↓pα =


C
CA
...

CAα−2

 = U↓pn T
1/2
n , O↑pα =


CA
...

CAα−2

CAα−1

 = U↑pn T
1/2
n . (44)

In order to speed up the computations of A, instead of using Eq. (3.43), another formula
based on definitions (3.44) can be used:

A = T−1/2
n

[
U↓pn
]+
U↑pn T

−1/2
n , (45)

where + means the pseudo-inverse1. This procedure of computing A is called the principal
component algorithm.

Considering only the parts of matrices U, T, V corresponding to the remaining zero
components of T and using Eq. (3.41), two canonical-form realizations can be obtained:

α∑
i=1

UT
0iCA

i−1 = 0, (46)

β∑
i=1

Ai−1BV0i = 0. (47)

1The Moore–Penrose pseudo-inverse of a non-square matrix A is defined as A+=
(
ATA

)−1
AT.
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Equation (3.46) is the basis for the q(α − 1)-dimensional observable canonical-form
realization. In general, this realization is not controllable and therefore it is not a minimum
realization. In the observable realization, the matrix A is a function of U0, B is a function
of Markov parameters Yα−1, and C is identity. On the other hand, Eq. (3.47) is the
basis for the r(β− 1)-dimensional controllable canonical-form realization. In general, this
realization is not observable and therefore it is not a minimum realization either. In the
controllable realization, the matrix A is a function of V0, B is identity, and C is a function
of Markov parameters Yβ−1. From the computational point of view one should choose the
canonical-form realization of smaller dimension.

The above considerations are basically the core of the system realization theory for
deterministic, time-invariant systems (idealistic case) developed by Kalman [43], Ho,
Kalman [31]. With the advent of practical engineering applications of the system iden-
tification, the Kalman theory was extended by Akaike [2] and Aoki [1] for stochastic
systems taking into account the state and measurement noise components (cf. (3.12)).
Another practical requirement i.e. the use of ambient excitation (e.g. wind, traffic),
pushed the system identification towards the output-only analysis. For observer identi-
fication, which is the case in practical situations, the related ARX model (cf. (3.10))
for deterministic input-output analysis is replaced by the ARMA model (cf. (3.19)) for
stochastic output-only analysis.

The on-line, stochastic system identification can be best realized through the use of
the Kalman filter. The role of the Kalman filter is to give an optimal prediction of the
next state vector xk+1 by using observations of the outputs up to time k and the related
matrices. The predictions are denoted by x̂k+1. Given the known dynamics and output
measurements, and assuming the initial values x̂0 = 0, P0 ≡ E

(
x̂0x̂

T
0

)
= 0, the Kalman

filter estimates x̂k+1 for a general, non-steady state are expressed by recursive formu-
las, describing the system, Kalman filter gain matrix and the state covariance matrix,
respectively:

x̂k+1 = (A−KC) x̂k + (B −KD)uk +Kyk,

Kk =
(
Γ − APkCT

) (
Λ0 − CPkCT

)−1
,

Pk+1 = APkA
T +

(
Γ − APkCT

) (
Λ0 − CPkCT

)−1 (
Γ − APkCT

)T
.

(48)

For output-only analysis, the term related to the input uk disappears. There is a close
relation between the state-space observer model (cf. (3.9), (3.6)) and the Kalman filter.
The arbitrary matrix G for the state-space model can be chosen in such a way that the
estimated state (the observer) approaches the theoretical one in the quickest possible way
(producing minimum error). It turns out that the Kalman filter gain matrix K = −G
is the quickest observer. To be found in observer identification is the Kalman filter state
sequence:

X̂ ≡ (x̂i x̂i+1 ... x̂i+j−1) . (49)

In stochastic identification, the Hankel matrix is composed of output measurements
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only:

H ≡ 1√
j



yref
0 yref

1 ... yref
j−1

yref
1 yref

2 ... yref
j

... ... ... ...

yref
i−1 yref

i ... yrefi+j−2

yi yi+1 ... yi+j−1

yi+1 yi+2 ... yi+j

... ... ... ...

y2i−1 y2i ... y2i+j−2



≡

(
Y ref

0|i−1

Yi|2i−1

)
, (50)

where the reference sensor block is allocated first. The reference sensors are crucial for
system identification as they are placed in optimal locations able to represent all modes
of vibration well. In practice, not all outputs are measured at the same time. For large
structures all sensors are grouped into a number of set-ups, arranged in such a way that
the common part of neighbouring set-ups are just the reference sensors.

For the sake of computational efficiency for large systems, only a subspace of all
outputs can be considered in stochastic system identification. A useful projection of the
row space of non-reference outputs onto the row space of the reference outputs can be
defined as:

℘ref
i ≡

Y ref

Y
= Y Y refT

(
Y refY refT

)+

Y ref . (51)

The H(0) matrix in deterministic approach is a product of the observability and con-
trollability matrices (cf. (3.39)). The main theorem of the stochastic subspace identifica-
tion formulated in Van Overschee, De Moor [84] states that similarly, the projection
matrix ℘ref can be expressed as the product of the observability matrix and the Kalman
filter state sequence (cf. (3.40), (3.49)):

℘ref
i =



C

CA

CA2

...

CAi−1


(x̂i x̂i+1 ... x̂i+j−1) = OiX̂i . (52)

For proving this, it is assumed that the number of measurement sessions approaches
infinity (j →∞). The QR factorisation of the Hankel matrix (3.50) enables determination
of the projection matrix ℘ref . Thus the Kalman filter state sequence can be calculated as:

X̂i = O+
i ℘

ref
i . (53)

Using the Kalman filter sequence, the stochastic output-only model (3.13) can be
expressed as follows: (

X̂i+1

Yi|i

)
=

(
A

C

)
X̂i +

(
ρw

ρv

)
. (54)

The noise residuals ρw, ρv are uncorrelated with X̂, thus Eq. (3.54) can be solved in
the least squares sense to give the state and output matrices:(

A

C

)
=

(
X̂i+1

Yi|i

)
X̂+
i . (55)
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Alternatively, the stochastic system identification may be performed quite analogously
to the deterministic approach. The deterministic Hankel matrix of outputs is replaced by
a stochastic Toeplitz matrix (a matrix in which every diagonal is composed of the same
element) of output covariances and the formula to determine the state matrix A looks
formally the same as the deterministic solution (3.43).

3.3 Modal analysis for an identified system

The modal decomposition of the state matrix A yields:

A = ΨΛdΨ
−1 . (56)

For general viscous damping, Λd is the diagonal matrix containing complex conjugate
eigenvalues:

Λd =

[
Λ 0

0 Λ∗

]
λi, λ

∗
i = −ξiΩi ± j

√
1− ξ2

iΩi , (57)

where Ωi is the i-th undamped natural frequency (rad/s) and ξi is the i-th damping ratio.
Ψ is the matrix of eigenmodes:

Ψ =

[
Θ Θ∗

ΛΘ Λ∗Θ∗

]
. (58)

where Θ contain eigenvectors of the system for the case of non-proportional damping.
It can be shown that the (A,B,C) realization of the system can be transformed to

the modal realization (Λd, Ψ
−1B, CΨ), identifying all modal parameters. The diagonal

matrix Λd contains information about the eigenvalues. The matrix Ψ−1B defines the initial
modal amplitudes (the so-called modal participation matrix) and the matrix V = CΨ –
the mode shapes at sensor points. Note that the output-only methods will never provide
information about modal amplitudes as the input matrix B is not identified in these
methods.

By transformation of eigenvalues λi from the discrete to the continuous time, the
system poles µi informing about the modal damping factors σi and the damped natural
frequencies ωi can be obtained using the following relation (cf. (3.5), (3.6)):

µi = σi + jωi =
lnλi
∆t

. (59)

The damping ratios ξi are then defined as:

ξi =
−σi√
ω2
i + σ2

i

. (60)

The Modal Assurance Criterion (MAC) is frequently used to evaluate the correctness of
the performed modal analysis:

MACp, p+1 =

∣∣vHp vp+1

∣∣2(
vHp vp

) (
vHp+1vp+1

) , (61)

where the superscript H means the complex conjugate transpose. The MAC coefficient
varies between 0 and 1 and indicates whether there is a good correlation between the
mode shapes for the identified model order p and the mode shapes for the one-order-
higher model.
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3.4 Methods of system identification

3.4.1 Frequency domain.

The frequency domain methods use formula (3.34), relating the output and input spectra.
The methods are often called non-para-metric system identification methods since no
physical parameters are directly identified through them.

Peak Picking. The earliest engineering application utilizing correlation and spectral
analysis for determination of modal parameters is the Peak Picking (PP) method. As
the name suggests it identifies eigenfrequencies of a system, occurring as peaks in a spec-
trum plot. With the strongly limiting assumption of low damping and well-separated
eigenmodes (no close eigenfrequencies), the spectrum matrix in the PP method is an
approximation of the observed mode shape, scaled by a constant factor. However, if
the column corresponds to a degree of freedom (dof), which is not excited by a certain
mode (the dof is in the nodal point of the mode), such mode cannot be identified. The
PP method also estimates the damping ratios, but it is unfortunately not accurate. The
principal assumptions of the PP method are often not fulfilled, which leads to misinterpre-
tations. Namely, the PP method tends to identify operational deflection shapes instead
of eigenmodes. This is incorrect because for closely-spaced modes, the deflection shape is
a superposition of many modes.

Complex Mode Indication Function. The Complex Mode Indication
Function (CMIF) method consists in performing the SVD of the spectrum matrix. A com-
plete review of the CMIF with applications can be found in Allemang Brown [3]. The
observation behind the method is the fact that the spectrum matrix (or equivalently the
FRF) at a certain frequency is practically influenced by only a few eigenmodes. The
number of the influencing eigenmodes determines the rank of the spectrum matrix. At
resonance, for well-separated modes, only one mode has influence on the spectrum ma-
trix, so its rank in SVD is one. If there exist several closely-spaced modes at the same
frequency, this fact is reflected by the increased rank of the spectrum matrix. Thus the
CMIF method can be considered as an SVD extension of the PP method, able to iden-
tify closely-spaced modes. By performing the SVD, the CMIF method decomposes the
initial system into single-degree-of-freedom systems. Ewins [20] describes the relevant
parameter estimation methods for such systems.

Maximum Likelihood. The most advanced spectrum-driven method is the Maximum
Likelihood (ML) method, described in Pintelon, Schoukens [68]. Unlike PP or CMIF,
the ML estimates the parameters of a model by minimizing an error norm. It is thus a
parametric method, solving a non-linear optimization problem in an iterative way. De-
spite the complexity of the approach due to the nonlinear formulation and the related
high computational burden, the ML methods proved to be a robust tool, identifying
modal parameters from large and noisy data. Guillaume et al. [29] shows that the ML
can operate both with FRFs (input/output) or spectra (output-only), which makes the
method versatile.

3.4.2 Time domain.

The time domain methods follow strictly the system realization theory, i.e. identify the
system by determining the triplet (A,B,C). Thanks to the modal analysis (see Sec. 3.3),
all modal parameters can be identified by the time-domain methods. Therefore these
methods are often referred to as parametric identification methods.
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Determnistic approaches. Two most popular traditional (input-
output) approaches for system identification in the time domain were developed simul-
taneously in the early 80’s. One of them called the Eigensystem Realization Algorithm
(ERA) was elaborated in the NASA Langley Research Center by Juang [41] in the field
of aerospace engineering. It uses the SVD factorization of the Markov parameter Hankel
matrix (cf. (3.43), (3.45)) for finding the triplet (A,B,C) to identify the system. The
deterministic ERA algorithm is based on both the input and output data. The canonical
form of ERA (cf. (3.46), (3.47)) is very similar to another approach developed in the
field of structural engineering called the Polyreference Time Domain (PTD), proposed
by Vold, Russell [85]. The PTD was probably the most widespread time-domain
input-output method of system identification applied in engineering before the advent of
output-only methods. It encompasses two particular earlier versions called Ibrahim Time
Domain (see Ibrahim, Mikulcik [40]) and Least Squares Complex Exponential methods.
The relations between the methods can be studied in Allemang [4].

Stochastic approaches. Stochastic methods in the time domain began their fast de-
velopment with proving the validity of formula (3.17), which enabled the use of classical
realization theory in output-only considerations. Many stochastic methods can be derived
from deterministic ones by substituting the impulse responses with output covariances.
For instance, the Instrumental Variable (IV) method formally corresponds to the PTD
method after performing such substitution. It identifies only the AR parameters, which
results in a linear problem solved in the least squares sense, however the ARMA model
structure is preserved. Advanced covariance-driven methods use only a subset of sensors
(reference sensors) for system identification and are therefore called stochastic subspace
methods. Stochastic Subspace Identification-cov (SSI-cov) uses the SVD factorization
and corresponds to the deterministic ERA after substituting the impulse responses with
output covariances. Depending upon the selection of weighting matrices for the Hankel
matrix, the SSI-cov has two versions, namely Balanced Realization (BR – no weighting)
and Canonical Variate Analysis (CVA – the weighting suited for the less excited modes to
be better identified). Another subspace method, the Stochastic Subspace Identification-dat
(SSI-dat) uses direct outputs (i.e the Hankel matrix (3.50)) instead of their covariances.
This is an advantage over SSI-cov, because the data is not squared up (cf. (3.31)), which
leads to higher numerical accuracy. SSI-dat determines the projection matrix (3.51),
(3.52) and then employs the Kalman filter state sequence (3.49), (3.53) in a robust and
stable least squares algorithm, identifying the system matrices (cf. (3.55)).

4 Low-frequency SHM methods

The low-frequency SHM methods operate in the non-ultrasonic range of frequencies i.e.
below 20 kHz. They strongly rely on modal analysis. Therefore, they are often called
vibration-based SHM. Most of the low-frequency SHM methods require a finite element
model and many of them use the state-space form (cf. (12)) of equations of motion. Col-
lecting experimental or in-situ measurements is necessary for obtaining the real response
of a structure. Then, the FE model is fit to the measured data by means of the sys-
tem identification procedures (see Sec. 3) in order to provide a reliable reference model.
Damage identification is usually performed by subsequent updating of the model. The
low-frequency methods often use quite sophisticated mathematical tools, but the effort
of implementing them in numerical algorithms pays off when it comes to results interpre-
tation, which is rather straightforward. Since the methods look at a structure globally
and examine a relatively broad inspection zone (possibly the whole structure, e.g. a
bridge), they tend to identify damage of considerable extension, e.g. stiffness degradation
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or corrosion. Presently, low-frequency SHM methods are first of all applied in civil and
mechanical engineering.

Several damage-sensitive parameters of the model have been tried to diagnose struc-
tural health. The damage identification procedure consists of updating the model pa-
rameters to best match the experimental response of a damaged structure. Friswell,
Mottershead [23] describe difficulties in solving the resulting inverse problem inher-
ent to model updating. Natural frequencies were used first to assess damage, but they
are sensitive to structural defects of rather significant intensity. Williams, Messina
[87] demonstrate the accuracy improvement of damage predictions through adding anti-
resonance frequencies. Besides natural frequencies, FRFs are also used to identify dam-
age. Yang, Lee [90] incorporate mode shapes to damage assessment algorithms as
being more informative than frequencies. Multi-component objective functions, combin-
ing both frequencies and modal shapes, are constructed to improve the effectiveness of
damage identification. As an alternative to mode shapes, Zimmermann [93] proposes
to analyse the so-called Ritz vectors. Ho, Ewins [32] and Maeck, De Roeck [52]
identified modal curvature as a parameter very sensitive to damage. Ceravolo et al.
[11] and Modena et al. [57] use damping-related coefficients as parameters in damage
detection. Zhang et al. [92] and Worden et al. [88] formulate SHM algorithms on
the basis of modal strain energy, while Fritzen, Bohle [25] use modal kinetic energy.
Friswell, Mottershead [24] and Fritzen, Bohle [26] consider model reduction as
an important issue in model updating, which may make the analysis feasible or not for
large engineering structures. Teughels [79] performed successful model reduction by
the application of linear and parabolic damage functions. Basseville [5] deals with
the problem of optimal placement of sensors, which plays an important role in effective
identification.

Spina [75] uses standard deterministic realization theory to perform damage identi-
fication via the ARX family models. By discovering the formal similarity between the
Markov parameters and output covariances (cf. (3.17)), a link was found between the
stochastic methods and the classical realization theory. Since then, the influence of noise
could be effectively analysed in SHM methods and moved them out of laboratories to
in-field applications. De Stefano et al. [18] apply an ARMA model to perform modal
analysis of a bridge girder with unknown random excitation. Bodeux, Golinval [8] use
an ARMA model to test the performance of buildings during earthquakes. Two stochastic
system identification methods (SSI-cov and SSI-dat) with an application to a wind-excited
steel mast are described in Peeters, De Roeck [65]. A comparison of IV, BR and CVA
approaches (see 3.4.2.2) applied to three different industrial case studies (car – acoustics,
aircraft, bridge) can be found in Hermans, Van Der Auweraer [30].

The Virtual Distortion Method (VDM), belonging to fast reanalysis methods (see
Holnicki–Szulc, Gierlinski [33]), was applied to detecting damage via the solution
of an inverse problem. Koakowski et al. [47] demonstrate the effectiveness of VDM
in the time domain whereas wiercz et al. [78] present its advantages in the frequency
domain.

An interesting alternative to inverse methods in damage assessment, which are the
vast majority of all approaches, is the Direct Stiffness Calculation proposed by Maeck
[53]. The approach identifies structural stiffness directly as the quotient of the bending
moment to beam curvature. With numerous sensors (accelerometers, optical fibres), both
components of the quotient can be measured and theoretically no structural model is
required.
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5 NDT/E methods

Theoretical and practical aspects of the NDT/E methods can be these days quickly studied
on the Internet, where the discussion panels addressing practical problems are of addi-
tional value (see e.g. http://www.ndt.net/ [38]). A selection of contemporary NDT/E
methods is presented in Lewinska–Romicka [48].

5.1 Ultrasonic testing

Ultrasonic testing (UT) is the interrogation of materials using stress waves of the frequency
higher than 20 kHz. This NDT/E method is capable of detecting both volume as well
as planar (surface) defects. The essence of UT is to inject stress waves into the material
to be examined and then monitor the transmitted or reflected signal. UT consists in
scanning the surface of material with a probe. Piezoelectric probes are widely used to
both induce and receive the stress waves. It is crucial that the stress waves propagate
efficiently between the probe and the material, which requires a good acoustic coupling
between them. This can be ensured by a coupling medium such as water, gels or greases.
Electro-magnetic acoustic transducers (EMAT) are also used to induce ultrasonic waves.
No coupling medium is required for EMATs.

The type of defect detected by ultrasonic scanning depends upon the type of induced
waves and their frequency. The theoretical detectable defect size is of the order of the
wavelength. Hence, the high-frequency waves are more sensitive to defects. However, low
frequency waves can penetrate the material to greater depths. So the choice of frequency
is a compromise between sensitivity and pene-tration.

There are two major scanning techniques used in UT:

• Pulse echo technique – utilizes the phenomenon of reflection of ultrasonic waves. At
a boundary of two different materials, a portion of the waves is reflected and the
rest is transmitted. The portion reflected depends on the angle of incidence and
the acoustic impedance (product of material density and wave velocity) of the two
materials. The undeniable advantage of the pulse echo technique is the required
access to only one surface of the tested object.

• Pitch and catch technique – requires access to two surfaces of the examined object.
It is used for materials with high damping (pulse echo method not efficient) or for
detecting near-surface defects. Two separate probes are placed on two opposite
surfaces of the object. One of the probe is transmitting the signal whereas the
other is receiving it. A material fault manifests itself in attenuation of energy of
the transmitted wave. Amplitude analysis of the transmitted signal is the basis for
quantification of defects.

The best detectability is observed for material discontinuities perpendicular to the
injected ultrasonic beam.

The advantages of UT are:

• possibility of detecting both volume and planar defects,

• safe operation conditions for the staff,

• relatively low cost of testing.

The drawbacks of UT are:

• no detection of discontinuities positioned along the ultrasonic beam,
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• difficulty in examining rough surfaces or irregular shapes,

• necessity of using the coupling medium for piezoelectric probes.

5.2 Radiographic testing

Radiographic testing (RT) is an NDT/E method detecting volume and planar defects. It
is based on the measurement of the attenuation of electromagnetic radiation after having
passed through a tested sample. The intensity of the incident radiation is reduced when
passing through material, depending on its thickness, density, and the wavelength of
radiation used. The penetrating power of the radiation increases with the growth of its
energy (reduction of wavelength).

RT is performed using:

• the X radiation produced by Roentgen lamps (wavelength range
10−13 ÷ 10−9),

• the γ radiation produced by radioactive isotopes e.g. Se, Yb, Co
(wavelength range 3× 10−14 ÷ 10−10).

The X or γ radiation triggers the photochemical phenomenon i.e. the decay of photo-
emulsion. RT takes advantage of the fact that the difference in attenuation as the radiation
passes through a defect, is sufficient to reveal the defect by exposition of a photographic
film.

The advantages of RT are:

• possibility of testing objects of various, complicated shapes,

• good detectability of volume defects and planar defects along the radiation beam,

• no necessity of contact between the object and equipment.

The drawbacks of RT are:

• harmful operation conditions for the staff,

• poor detection of discontinuities positioned perpendicular to the radiation beam,

• relatively high cost of testing and bulky equipment.

5.3 Acoustic emission

Acoustic emission (AE) is the phenomenon of generating an elastic wave, in the range
of ultrasound usually between 20 kHz and 1 MHz, by the rapid release of energy from
the source within a material, which is deforming or fracturing under external loading.
The energy comes from crack growth, dislocations or phase transformation. The elastic
wave propagates through the solid to the surface, where it can be recorded by one or
more piezoelectric sensors. In this way, information about the existence and location of
possible sources is obtained.

AE differs from other NDT/E methods, which actively probe the structure. AE is
a passive method, which listens to emissions from active defects and is very sensitive to
defect activity when a structure is loaded beyond its service load in a test. AE analysis
is a very useful method for the investigation of local damages in materials. One of the
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advantages compared to other NDT/E methods is the possibility to observe the damage
the processes during the entire load history.

Operational environments are generally very noisy, and the AE signals are usually very
weak. Hence, signal discrimination and noise reduction are very difficult, but extremely
important for successful AE applications.

The advantages of AE are:

• no necessity of exciting the object or structure (service load is sufficient),

• ability of differentiating between stable and growing defects.

The drawbacks of AE are:

• difficulties in quantifying defects (commercial AE systems can only estimate qual-
itatively the extension of damage in the material and tell approximately how long
the components will last),

• weak signals, therefore high sensitivity to environmental noise.

5.4 Magnetic particle inspection

Magnetic particle inspection (MT) consists in magnetizing an object made of a ferromag-
netic material and examining the attenuation of magnetic field (flux), which reveals the
places of defects. MT is suitable for planar defect detection only. By definition, MT
is limited to ferromagnetic materials e.g. iron, ferromagnetic steel, cast iron, cast steel,
iron-based alloys (Fe-Co, Fe-Ni).

The first stage of the MT method is magnetizing the tested material with a magnetic
defectoscope, which is a device for inducing magnetic field in the material directly (flux
defectoscopes) or indirectly by using electric current (current defectoscopes). Then, one
of the following MT techniques may be used:

• magnetic powder inspection – determining the attenuation of magnetic flux using
magnetic powders. As a result, a defectogram is obtained, in which the magnetic
powder reflects the existing defects,

• magnetic transducer examination – measuring the attenuation of magnetic flux with
magnetic transducers (induction transducers are the most widely used).

After the testing has been completed, the tested object has to be demagnetized.
The advantages of MT are:

• possibility of detecting planar (even narrow or shallow) discontinuities on/underneath
the surface,

• low cost of equipment.

The drawbacks of MT are:

• harmful operation conditions for the staff (toxic powder components),

• limited applicability to ferromagnetic materials.
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5.5 Eddy currents

Eddy current testing (ET) is a method for revealing surface defects in electrical con-
ductors. The method is based on application of the Faraday’s law of electromagnetic
induction. The material is placed in varying magnetic field (produced by induction trans-
ducers), which induces varying electrical field in conductive materials. The amplitude
and phase of the signal from the transducers contains information about the geometry of
material defects. The basic equipment is an ET defectoscope, providing power supply for
induction transducers and analyzing their output signals.

The advantages of ET are:

• possibility of detecting planar discontinuities on/underneath the surface,

• applicability to coated (e.g. painted) surfaces.

The drawbacks of ET are:

• necessity of having extensive knowledge and experience by the operator,

• difficulties in interpretation of the signal affected by electric conductivity, magnetic
penetrability and operating frequency.

5.6 Penetrant testing

Penetrant testing (PT) is a method of similar applicability to MT. It is used in materials
in which MT or ET cannot be used. The essence of PT is application of a penetrant
to a tested surface and subsequent application of a developer. The penetrant is usually
an oil-base fluid and the developer is a dry powder or a powder suspended in water.
The penetrant usually includes toxic additives e.g. fluorescent substance, therefore it is
necessary to wash the examined object after the test.

The advantages of PT are:

• possibility of detecting planar discontinuities on/underneath the surface,

• possibility of detecting discontinuities in locations of rapid changes of cross-section
(hardly possible by any other method),

• low cost of equipment.

The drawbacks of PT are:

• harmful operation conditions for the staff (toxic components),

• no applicability to coated (e.g. painted) surfaces,

• tedious (many stages) process of testing.

5.7 Optical holography

Optical holography (OH) is an imaging method, which records the amplitude and phase
of light reflected from an object as an interferometric pattern on film. It thus allows
reconstruction of the full 3D image of the object. In OH, the test sample is compared
by interferometric measurement in two different stress states. Loading can be mechanical
(e.g. vibration), thermal, etc. The resulting interference pattern contours the deformation
undergone by the specimen between the two recordings. Surface as well as sub-surface
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defects reveal distortions in the otherwise uniform pattern. In addition, the characteristics
of the component, such as vibration modes, mechanical properties, residual stress, etc.,
can be identified.

The light used to illuminate the surface of the specimen must be coherent, which
means that it must also be monochromatic, and the only practical source is a laser.
With fast development of charge coupled devices (CCD) and digital image processing,
OH offers tremendous flexibility and real-time visualization. Automated defect detection
and analysis is possible thanks to computerized analysis of patterns.

OH is a dynamically developing method of many advantages, however one serious
drawback for the moment – its huge cost.

6 High-frequency SHM methods

In contrast to the low-frequency SHM methods, the high-frequency ones operate in the
ultrasonic range of frequencies i.e. above 20 kHz. The physical background for the meth-
ods is the phenomenon of elastic wave propagation in solid media. The high-frequency
SHM methods heavily utilize experimental instrumentation for all stages of analysis i.e.
generation and detection of elastic waves as well as results interpretation. Especially
in the last aspect, they differ from the low-frequency methods, because the interpre-
tation of results (often performed on-line) may not be easy and in principle requires
much experience. Most of the high-frequency methods can be placed in the category
of pattern recognition at the stage of damage identification. The methods look at a
local part of a structure and therefore are focused on precise identification of a rela-
tively small defect (e.g. a crack) in a narrow inspection zone (e.g. the connection of
a wing to the fuselage in an aircraft). The most numerous applications of the high-
frequency SHM methods can be observed in the aerospace and also mechanical engineer-
ing.

A comprehensive review of the high-frequency SHM methods is given in
Staszewski [76]. Detailed mathematical description of the phenomenon of elastic wave
propagation is provided in Rose [69]. Muravin [60] and Holroyd [35] characterize
acoustic emission (AE), which utilizes structure-borne stress waves generated by inter-
nal material defects under external load applied. It is a passive method – no excitation,
except for the service load, is required. All other methods require high-frequency exci-
tation. Ultrasonic testing (UT) relies on the transmission and reflection of bulk waves
and utilizes various phenomena (e.g., wave attenuation, scattering, reflections, mode con-
versions, energy partitioning) for damage detection. Presently, the most frequently used
damage detection method based on guided (between two boundaries of a plate) ultrasonic
waves is the Lamb wave inspection, in which the symmetric and antisymmetric modes of
0-th order (below 0.5 MHz) are most frequently analyzed. Koehler et al. [46] report
that the shear horizontal waves with non-dispersive 0-th order mode are also effective in
damage detection. Mallet et al. [56] identify structural defects by examining Lamb
wave attenuation and mode conversions. Biemans et al. [7] and Betz et al. [6] propose
acousto-ultrasonics as another high-frequency SHM method, combining elements of AE,
UT and Lamb wave inspection. Acousto-ultrasonics uses an impulse excitation, resulting
in propagation of a number of mixed wave modes, difficult to analyse.

Piezotransducers are the most versatile devices used in SHM. The use of piezoelectric
transducers for generation and detection of elastic waves in plates was first studied in
Tracy, Chang [81] and continued by many researchers. Giurgiutiu et al. [28] use
piezoelectric-wafer active sensors (PWAS) for Lamb wave inspection. Park Inman [63]
propose an interesting SHM method utilizing the direct and converse piezoelectric effect
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simultaneously, to obtain an impedance signature and identify damage by monitoring its
changes.

Finite Element Method has been extensively used for modelling wave propagation.
However, there are problems of accuracy and efficiency in the high-frequency regime.
To overcome those, Ostachowicz Krawczuk [62] developed the Spectral Element
Method providing high accuracy for a relatively coarse mesh thanks to defining the ele-
ment stiffness matrix in the frequency domain. Except for the Finite Element Method,
Stavroulakis [77] successfully uses the Boundary Element Method for high-frequency
crack identification as well. Lopez–Diez et al. [51] employ the Statistical Energy Anal-
ysis as a tool for incipient damage detection in a spacecraft panel.

7 Artificial intelligence in SHM

In damage identification algorithms, two major approaches can be met – either the for-
mulation is analytical and relevant formula-based methods are used e.g. sensitivity-based
optimization, or the formulation avoids analytical formulas and then artificial intelligence
(also named soft-computing) methods are employed.

In fact, most structural health monitoring methods include Artificial Intelligence (AI).
The SHM methods make use of wavelet transformations (see Mallat [55], Hou et al.
[36], Hou, Hera [37]) at the stage of signal processing. Artificial neural networks (see
Chang et al. [12], Yana et al. [89]), genetic algorithms (see Chou, Ghaboussi [13]),
and statistical analysis (see Farrar et al. [21], Monaco et al. [58], Sohn et al. [73]) are
employed at the stage of damage identification. The AI tools are efficient, although they
disregard the physical interpretation of the analysed phenomena. Case-based reasoning
(CBR) proposed by Mujica et al. [59] is a worth-noting method, combining wavelet
transformation with Kohonen-like neural networks (self-organizing maps). However, the
use of knowledge-based approaches (such as CBR) has not been extensively exploited for
damage detection yet.

8 SHM applications

One of the earliest applications of an SHM method was proposed by Cawley for a
pipeline [10]. Presently, SHM methods have found applications mainly in civil, aerospace
and mechanical engineering.

The Civil Engineering applications are first of all bridges (see Fritzen, Bohle [25],
[26], Wang et al. [86], Peeters et al. [66], Maeck, De Roeck [54], Teughels, De
Roeck [80]) masts (see Peeters, De Roeck [65]), buildings (see Skjaerbaek et al.
[71], Spina [75]) and historical buildings (see Del Grosso et al. [15]).

The aerospace applications encompass aircrafts (see Hunt, Hebden [39]), spacecrafts
(see Lopez–Diez [51]), satellites (see Kabashima et al. [42]) and composites (see Zak
et al. [91], Yana et al. [89]).

The mechanical applications concentrate on rotating machinery (see Uhl
et al. [83], Kasarda et al. [45]).

Other applications include e.g. water networks (see Holnicki–Szulc et al. [34]).

9 Final remarks

The Structural Health Monitoring has started as a research field applied exclusively in the
branches of engineering requiring high-precision standards, e.g. in spacecraft or rotating
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machinery design. However the problem of aging infrastructure has accelerated the de-
velopment of the Structural Health Monitoring in civil engineering as well, especially for
bridges. An important step forward for the low-frequency methods was the formulation of
the stochastic identification approach, enabling the consideration of measurement noise.
Another essential achievement was the use of output-only data, which enabled to perform
the Operational Modal Analysis (OMA), basing solely on ambient excitation. The newest
trend seems to combine the advantages of the OMA and methods dealing with the defined
excitation, resulting in the Operational Modal Analysis with eXogenous inputs (OMAX).

Piezoelectric transducers are commonly used in present-day SHM as they have the rare
feature of being the actuator and sensor in one device. Optical fibres are gaining more
and more attention, especially in bridge applications. Wireless sensor communication is
important in permanent monitoring. Once the wireless sensors are mounted, the collected
data can be transmitted long distance and analysed in a central unit far away from the
monitored structure. In view of the abundance of recorded data on large structures, data
condensation techniques have become a critical issue in present-day SHM (see Spencer
et al. [74]).

Thus far, the majority of research done in SHM is limited to linear problems. Nonlinear
analysis has been recently proposed by Farrar et al. [22], Demarie et al. [16], Uhl
et al. [83]. Another important and relatively unexplored problem is the distinction of
damage identification from the influence of environment on the structure (see Peeters
et al. [67], Sohn et al. [73]). Deraemaeker Preumont [17] propose to use spatial
filters to handle the problem.

It seems that the SHM is becoming more and more important as a research area
of practical value to the engineering community, whose development is in fact driven by
maintenance requirements of industrial structures. The SHM community is getting better
organized. Many European research centres, dealing with the area, were co-operating in
the Structural Assessment Monitoring and Control (SAMCO – (http://www.samco.org/)
network, EU-financed in the years 2002–2006, and still continued as a voluntary initia-
tive. Another SHM-related organization is the European Association for the Control of
Structures (http://dipmec.unipv.it/eacs/).
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